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A potential flow model has been formulated for scallop swimming. Under the small- 
disturbance approximation, the problem of the unsteady flow past the wing-like 
configuration of a scallop is separated into two linear sub-problems : the steady lifting 
problem and the unsteady symmetric thickness problem. The latter is associated with 
the expansion and contraction of the boundary surface of the scallop due to the shell 
opening and closing. A quasi-two-dimensional analytical solution of the thickness 
problem was obtained to give the time-dependent fluid forces acting on the outer 
surfaces of the shells. In addition to the added-mass effect, which has been widely 
accepted in the hydrodynamics of aquatic locomotion, there are two other mechanisms 
in the fluid reaction : flow-induced pseudo-elasticity and pseudo-viscosity. The pseudo- 
elasticity provides a force proportional to the gape angle displacement, and will assist 
shell opening but resist shell closing. The pseudo-viscosity force is proportional to the 
angular velocity of the gape, and benefits both shell opening and closing. Their roles 
are discussed through comparison with those of shell inertia, hinge ligament elasticity 
and hinge damping. At 10 "C the hinge damping in the scallop was found to be almost 
compensated by the flow pseudo-viscosity. The unsteady fluid reaction may have a 
significant effect on the operation of the dynamic swimming system of scallops. 

1. Introduction 

Scallops are one of the few bivalve mollusca that have evolved the ability to swim, 
and use this ability to avoid natural predators, and to seasonally migrate. The mech- 
anics and hydrodynamics of scallop swimming have received the attention of many 
researchers. Jet propulsion has been studied for scallops (Moore & Trueman 1971 ; 
Gould 1971) and other aquatic animals (Trueman 1975; Alexander 1977; Weihs 1977; 
O'Dor 1988; DeMont & Gosline 1988; Madin 1990). Stanley (1970) and Gould (1971) 
emphasized the importance of hydrodynamic lift in overcoming gravity. Some hydro- 
dynamic characteristics were mcasured for several species (Gould 1971 ; Morton 1980; 
Dadswell & Weihs 1990) to understand the observations that some species swim better 
than others and to examine scale effects of swimming ability. Gruffydd (1976) 
measured the hydrodynamic lift on scallops in current. Hayami (1991) and Millward & 
Whyte (1992) experimentally studied the lift and drag on living and fossil scallop shells. 

Scallops, as bivalves, consist of two shells (valves) that are held together by an elastic 
hinge (figures 1 and 2). The shells can be rapidly pulled together by the contraction of 
a single adductor muscle, which is the part of the animal consumed by people. The 
water is expelled out of the cavity between the shells (mantle cavity) during the shell 
closing. The animal then keeps its shells closed to glide for a while. Strain energy stored 
in the ligaments during shell closure is released as the muscle relaxes to open the shells, 
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FIGURE 1. A photograph of a scallop, Plucopecten mugellunicus, with a shell height (S,) of 0.13 m: 
(u) top view; (b)  side (posterior) view. The photograph was taken with the animal resting on the 
substrate. The ventral anterior shell is covered with various algae and invertebrates. In the posterior 
view, the shells are gaped for feeding, and the velum contains many ocelli (black dots) that form the 
‘eyes’. 

meanwhile the water is drawn into the cavity under the regulation of the velum between 
the two shells. After reaching the maximum shell opening the velum is sealed and the 
adductor muscle is activated to close the shells again. 

Scallops swim with the ventral region foremost and are propelled by pulsed jets 
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FIGURE 2.  Schematic diagrams of a scallop corresponding to those shown in figure 1 : (a) top view 
when the upper shell is removed, A,  is the valve area, S, shell width, S, shell height; (b)  side (anterior) 
view, a is the angle of attack, aT the trajectory angle between the swimming direction and horizontal 
surface. The gape angle y(t) = 2/3(t) is used to describe the shells opening and closing around the 
hinge. 

(figure 2). Level swimming is achieved by periodic propulsive jets directed backward 
from two orifices near the dorsal hinge. Generally, one sustained bout of swimming 
may last several seconds and the distance covered can be hundreds of centimetres. One 
scallop of the species Amusium pleuronectes, was recorded to swim for 18 s, covering 
a distance of 10m in a laboratory condition (Morton 1980). The typical mean 
swimming speed is about 0.45 m s-l for Placopecten (Dadswell & Weihs 1990). A 
maximum swimming speed of 0.73 m s-' was found for a 0.07 m Amusium (Morton 
1980). Dadswell & Weihs (1990) reported a maximum speed of 0.79 m s-l for a 
0.06 m Placopecten. 

The sea scallop Placopecten magellanicus (figure 1) is one of the most important 
species of molluscan shellfish that is commercially fished in Canada. The scallops are 
captured by nets (drags) that are pulled along the ocean floor. The ability of the 
animals to see the drag approaching and to escape capture has initiated an extensive 
study to predict swimming ability under various environmental conditions. The body 
length of these animals (shell height) reaches a maximum of about 0.15 m. For a 
0.065 m long Placopecten, the clapping period is around 0.3 s, during which about 
0.017 kg of sea water is sucked into the mantle cavity and then expelled out. 

The external fluid forces acting on each of the two shells during swimming is time- 
dependent and associated with shell opening and closing. The pressure difference 
between the upper and lower shells contributes to the net lifting force and induced 
drag. The instantaneous force on the external surface of each shell will affect the valve 
opening and closing and thus the dynamics of the locomotor system, consisting of the 
muscle, the dorsal hinge ligaments and the shells. Vogel (1985) measured the 
importance of flow in assisting shell reopening, but only steady flows were considered. 
The unsteady fluid reaction on each shell, which has not been measured yet, must be 
evaluated in order to quantify the energetics of locomotion in scallops (DeMont 1990; 
Marsh, Olson & Quzik 1992; Bowie, Layes & DeMont 1993). Such an unsteady 
hydrodynamic force acting on the external surface of the animal has been omitted in 
many previous studies on the energetics of jet-propelled aquatic locomotion. 

The potential flow theory for low-speed aerodynamics may be used to study scallop 
swimming in water, since scallops have a wing-like configuration and the outer flow 
around the shells is associated with large Reynolds numbers. Assuming small 
disturbances, the problem of unsteady flow past a thin wing can be separated into two 



76 J.-Y. Cheng and M.  E. DeMont 

linear sub-problems, namely the asymmetric lifting and symmetric thickness problems. 
The thickness problem is always unsteady, even for steady swimming, and provides the 
fluid force which interacts with the force generated by the contraction of the adductor 
muscle. During a shell clapping cycle, the thickness increases when the shells open and 
decreases when the shells close. The unsteady lifting surface has been extensively 
studied in unsteady aerodynamics with particular application to aeroelasticity, stability 
and stall (Belotserkovskii 1977; McCroskey 1982), and also to fish swimming (Lighthill 
1975; Ahmadi & Widnall 1986; Blickhan & Cheng 1994). The unsteady thickness 
problem was generally considered to have no practical meaning and has received little 
consideration in conventional unsteady aerodynamics. Scallop swimming provides a 
biological example that shows the importance of the unsteady thickness effect. 

In this paper we will formulate the unsteady potential flow problem resulting from 
scallop swimming. A quasi-two-dimensional analytical solution is derived for the 
unsteady thickness problem. The unsteady fluid force and moment about the hinge 
acting on the external surface of each shell are obtained. The properties of the force and 
moment are discussed to demonstrate the possible effect on the dynamic swimming 
system. This result has been combined with the mechanical properties of the hinge 
(DeMont 1990; Bowie et al. 1993), the measured kinematics and internal fluid pressure 
to study the dynamics and energetics of scallop swimming, and to predict the in vivo 
muscle performance (Cheng, Davison & DeMont 1996). 

2. Fluid-dynamic model 
2.1. Formulation of potential flow model 

Scallops are assumed to swim at a speed U(t) in an otherwise undisturbed fluid. An 
instantaneous body coordinate system (x, y ,  z )  is attached to the scallop with the (x, y)- 
plane coinciding with the average plane of the upper and lower shells (the commissural 
plane). The x-axis crosses the hinge axis at a right angle. In this body system, the 
oncoming flow of velocity U(t)  has an angle of attack with the x-axis, a(t). The shells 
open and close in the z-direction. Level swimming is considered so that the trajectory 
angle is zero (figure 3) .  

If we do not consider the flow between the valves, scallop swimming is associated 
with large Reynolds number, close to or larger than lo4 for Placopecten magellanicus 
(Dadswell & Weihs 1990). The viscous effect is important only in the thin boundary 
layer in which the friction drag can be determined. The fluid flow outside the boundary 
layer and wake can be considered as an irrotational inviscid incompressible flow, i.e. 
potential flow. 

For potential flow, a velocity potential @(x, y ,  z ,  t )  exists and is governed by the 
Laplace equation 

The velocity field is 

Since the disturbance induced by the movement of the scallop will decay far from the 
body, in the body system we have 

A@(x,y, Z ,  t )  = 0. 

V(x,y, z ,  t )  = V@. 

(1) 

(2) 

lim V = U( t )  (cos ai + sin aj). 
r+oo 

The outer boundary of the scallop at any instant can be written as 

(3) 

B(x,y,z,  t )  = z-h(x,y,z,  t )  = 0. (4) 
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FIGURE 3. (a) Coordinate system for a swimming scallop. (b) Decomposition of the problem of the 
changing thickness, cambered scallop swimming at an angle of attack into three sub-problems. 

The no-penetration condition on the solid surface requires that the normal 
component of the relative velocity on the solid boundaries must be zero. There is an 
outward flow (propulsive jets) from the orifices in the dorsal direction during shell 
closing, and an inward flow sucked into the cavity through the ventral mantle margin 
that is regulated by the velum during shell opening. The instantaneous volume of the 
expellable water enclosed by the velum and the two shells is determined by the position 
of the two shells. According to the principle of conservation of mass, during any time 
interval the expelled water equals the reduction of water mass in the cavity. Thus the 
velocity of the jet, Y, is a function of the shell clapping velocity and the geometries of 
the cavity and jets. In principle, the velocity of the inward flow, q, can be similarly 
determined. Hence we have the boundary condition on the scallop surface as 

0 on shells 

(V@- I/)lB--O.n = 4 on jet orifices, tEAt,, ( 5 )  I on velum, tEAt,, 

where n(x, y ,  z ,  t )  is the outward normal to the surface of the scallop, I/ (x ,  y ,  z ,  t )  the 
relative velocity of the surface due to the clapping of the shells in the body system and 
determined by (3)’ Atc ad At,, are the time intervals of the shell closing and opening, 
respectively. Thus the potential flow around a swimming scallop is determined by 
equations (1)-(5) and the Kutta condition, which requires zero loading at the trailing 
(dorsal hinge axis) edge. Once the velocity potential is obtained, the corresponding 
pressure field can be calculated from Bernoulli’s equation. 

2.2. Flow around a sealed body and the small-disturbance approximation 
The problem presented above will be simplified in this section. The jet opening is very 
small, and the mean cross-sectional area is about 1 YO or less of the shell area (our 
measurements). The time duration of the shell closing phase is about one third of one 
clapping period. The jet flow from the hinge orifice during shell closing is assumed to 
have no influence on the flow around the body. The water is drawn into the cavity 
through the mantle margin along most of the periphery of the shells. The detailed 
processes of the flow sucking into the cavity during shell opening have not been 
observed. The inward flow may reduce the fluid pressure near the ventral opening and 
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subsequently the magnitude of the perturbation velocity of the flow around the animal. 
However, it is likely that the cavity is filled instantly while the shells are opening, since 
the animal is immersed in the infinite fluid medium and the shell opening is towards the 
swimming direction. The shell opening phase also only occupies about one third of one 
clapping period. Although the inward flow may affect the flow around the body during 
shell opening, the difference between the external flow around the swimming scallop 
with and without the inward flow is not expected to be significant. The inward flow will 
be ignored here. 

In the body system, the total velocity potential is composed of the potential due to 
the oncoming flow and the perturbation potential induced by the animal, i.e. 

@(x, Y ,  z ,  0 = @Ax, Y ,  z ,  0 + $6 Y ,  z ,  0 = U(t)  (x cos a + z sin 4 + &, Y ,  z ,  0, (6) 

where the perturbation potential $(x, y ,  z ,  t )  is also governed by the Laplace equation. 
From (3) and (6), the boundary condition at infinity for the perturbation potential q5 
now becomes 

lim V$ = 0. (7) 
r+m 

Substituting (4) and (6) into the no-penetration condition (5) on the shells, we have 

Usina+-, ah on shells. 
at 

For steady swimming, we assume that the scallop swims at a constant speed U which 
may be obtained by averaging the instantaneous swimming speed over several clapping 
cycles. There have been no detailed kinematic studies of the instantaneous swimming 
speeds of scallops. However, our observations indicate that a constant speed swimming 
can be a good approximation to real swimming. The instantaneous thickness of the 
scallop is the sum of the steady position when the shell is closed and the increment due 
to the shell opening. The maximum thickness is located a little behind the centre of the 
shell. The ratio of the maximum thickness of scallops when the shells are closed to the 
shell height ranges from about 0.2 to 0.3 for most species (Dadswell & Weihs 1990; 
Millward & Whyte 1992). The increment in the thickness due to the shell opening 
increases from zero at the hinge to the maximum at the ventral tip. The ratio of the 
increased thickness due to the shell opening to the shell height is about 0.157 at the 
ventral tip when gaped at the mean value of 9" for Placopecten magellanicus (Dadswell 
& Weihs 1990). Thus the maximum total thickness ratio is about 0.28 to 0.38. On 
average, the thickness ratio changes from 0.25 to 0.33 during a clapping cycle of regular 
swimming for most species. Furthermore, the mean angle of attack of level swimming 
is small and about 6" for Placopecten magellanicus (Dadswell & Weihs 1990). Thus it 
seems reasonable that the classical small-disturbance approximation can be used to 
obtain the first-order perturbation solution for the problem of the swimming scallop. 

If we assume the velocity perturbations caused by the motion of the scallop to be 
small, i.e. 

and keep all terms of first-order small quantities, (7) becomes 
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where A ,  is the average projected domain of the shells on the (x, y)-plane (commissural 
plane). This is a linear boundary condition which has been transferred to the z = 0 
plane. 

The velum (pallial curtain) between the parted valves regulates the flow through the 
ventral mantle margin. When the shells are not closed, the outer surface of the velum 
can be viewed approximately as part of a cylindrical boundary with its longitudinal 
axis in the z-direction. Thus the external surface of the sealed body is composed of the 
upper and lower shells and the wall of the cylinder segment cut by the shells. 

The swimming movement is achieved by the clapping of two rigid shells. The shell 
oscillation may be described by the time-dependent gape angle, r ( t )  (figure 2b). During 
free swimming, either shell can be viewed at any time as opening by half of the gape 
angle with respect to the commissural plane, i.e. p(t) = !jr(t). The instantaneous 
position of the outer surfaces of the upper and lower solid shells in the body coordinate 
system may be described by 

( X , Y  E A ) ,  (1 1) 

where S, is the body length (shell height), the subscripts p and w represent the upper 
and lower shells, s and u represent the steady and unsteady quantities, hps(x, y )  and 
h,,(x,y) are the steady parts of the position of the upper and lower shells when the 
shells are closed, and h,,(x, y )  and hwu(x, y )  are the unsteady parts of the shell position 
due to the shell clapping. Defining a camber function h, and a thickness function h, as 

} (12) 
h,(x, Y ,  t )  = !j@, + h,) = !j(hP, + h,,) = h,,(x, Y ) ,  

h t (4  Y 2 t )  = !j@, - A,) = +(hPS - h,,) + P(t) ( S L  - x> = h,,(x, Y )  + h , , k  0, 
then the upper and lower shell surfaces of the scallop in (11) can be expressed as 

h, = h, + h,, h, = h, - h,. (13) 

This linearized problem can be separated into three sub-problems using thin-wing 

(i) the effect of angle of attack: for the flow around a zero-thickness un-cambered 
theory from aerodynamics (see figure 3b). These are: 

wing at an angle of attack of a, the boundary condition on the shells is 

(ii) the effect of camber : for the flow around a zero-thickness cambered wing at zero 
angle of attack, the boundary condition on the shells is 

(iii) the effect of thickness: for the flow around a symmetric wing with non-zero 
thickness at zero angle of attack, the boundary condition on the shells is 
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q51, 4% and q53 are the perturbation potentials due to the angle of attack, camber, and 
thickness effect, respectively, and all satisfy the Laplace equation and the infinity 
condition; and q52 also need to satisfy the Kutta condition at the trailing edge. Each 
of them can be solved independently. The complete solution for the scallop 
configuration, i.e. a thin cambered wing with variable thickness is 

$(x, Y, z, 0 = q51(x, Y ,  2) + $&? Y, 4 + $3(& Y ,  z ,  0. (17) 

The linearized pressure coefficient derived from the unsteady Bernoulli equation using 
the small-disturbance approximation is 

q51 and q52 form the asymmetric steady lifting surface problem describing a flow 
around an infinitely thin cambered plate at an angle of attack. This gives a non-zero 
difference between the fluid pressures on the upper and lower shells and produces a net 
lift force and induced drag. The steady lifting-surface problem has been extensively 
studied for many aeronautical configurations (Katz & Plotkin 1991). According to 
thin-wing theory, there is a linear relationship between the lift and the angle of attack 
for thin wings in a flow at small angle of attack. Since scallops are much heavier than 
sea water, this conventional hydrodynamic lift plus the vertical component of the jet 
force is used to prevent sinking. We have applied the three-dimensional vortex ring 
panel method (Cheng, Zhuang & Tong 1991) to calculate the lift and induced-drag 
coefficients for the scallop configuration. We have shown that scallops have a small 
aspect ratio, and lack the best planform shape (Cheng & DeMont 1996), so that 
scallops have not evolved a shape that optimizes hydrodynamic properties in relation 
to the lift and drag forces. A hydrodynamic model for unsteady jet propulsion has been 
developed, in which the propulsion performance is characterized by three non- 
dimensional parameters : the storage-discharge volume ratio, reduced clapping 
frequency and reduced discharge frequency. Pulsed jet propulsion is designed to 
achieve high thrust at the expense of efficiency. The Froude efficiency (from about 0.3 
to 0.5) is not necessarily as low as previously widely considered. The swimming 
mechanics describing the balance among the lift, jet thrust, gravity and drag on a 
swimming scallop have been evaluated to illustrate the swimming strategies and 
performance in relation to the ontogeny, external morphology and physiological 
parameters of the animal. These are given elsewhere (Cheng & DeMont 1996). 

The thickness effect (q5J results in a velocity and pressure field symmetric about the 
commissural plane (x,y plane), and so does not produce net lift. It does not affect the 
momentum balance of the moving animal as a whole and is independent of the 
swimming mechanics mentioned above. However, the change in thickness with time 
during swimming is the result of the shell clapping powered by the adductor muscle 
contraction. This provides a time-dependent fluid force on each shell and in the same 
direction as the muscle force. The effects of angle of attack and camber produce a 
constant force which does not change with the shell opening and closing driven by the 
muscle contraction, and accounts for the buoyant weight. Thus it is only necessary to 
include the external fluid reaction due to the unsteady thickness effect in a model of the 
locomotor dynamics, and so it can be treated separately. 

The unsteady symmetric flow is induced solely by the volume change of the scallop 
configuration, and will be solved here. The general solution of the potential flow 
problem can be obtained by superimposing elementary solutions of the Laplace 
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equation. The thickness effect can be modelled with a source singularity distribution 
(Cheng, Zhuang & Tong 1992). The source elementary solutions can be distributed on 
the z = 0 plane for the linearized problem (Katz & Plotkin 1991). 

The scallop planform is close to a circle and for Placopecten (Dadswell & Weihs 
1990) its aspect ratio ranges from 1.1 to 1.4 during growth. The three-dimensional 
effect of the thickness problem should be much smaller than that of the lifting problem, 
because the tip vortex produced with an angle of attack should be absent or weak in 
the symmetric flow. On most parts of the shell surface the spanwise (anterior-posterior) 
component (0) of the perturbation velocity should be much smaller than the chordwise 
(ventral-dorsal) component (u) and not larger than the third component (w) in the 
z-direction. Notice that the thickness is smaller than the shell width, and we have 

Thus at any spanwise station the three-dimensional Laplace equation can be 
approximated by a two-dimensional equation for the flow around the local symmetric 
airfoil. Since a two-dimensional analytical solution for the above thickness problem 
can be derived as given in the following Section, it is worthwhile to consider a quasi- 
two-dimensional case of the problem. The total hydrodynamic force on the three- 
dimensional symmetric body will be obtained as an integral of the forces on a set of 
unequal, quasi-two-dimensional longitudinal strips. The two-dimensional solutions 
basically set the upper limit of the three-dimensional solutions, i.e. the real perturbation 
velocity and hydrodynamic force of the three-dimensional flow may be lower than 
those of the quasi-two-dimensional flow. 

3. Solution of two-dimensional flow 
For a local longitudinal strip at any spanwise station, a two-dimensional flow 

around a symmetric airfoil with the leading edge at x = xL(y) and trailing edge at 
x = xT(y) is considered (figure 4). The chord length is S,  = xT(y) -xL(y). In this section 
all quantities will be normalized by using swimming speed U and the local chord S,  as 
reference velocity and reference length, respectively. The potential and velocity fields 
are obtained by solving the two-dimensional Laplace equation and the boundary 
conditions (7) and (16) with y as a parameter. The airfoil thickness effect is modelled 
by a continuous distribution of the two-dimensional source singularities distributed 
along the commissural axis. The perturbation potential at any point (x,z) is then 

where g(x,t) is the strength function of the source singularity per unit length. (The 
subscript 3 of the potential due to the thickness effect (16) is omitted hereafter.) The 
two velocity components are 

u(x, z ,  t )  = - a4 = -s’ 1 C(Xo, t) (x - XJ 

ax 27t (x - xo)2 + 2 2  dxoy 

a4 1 1 Z 

4% 0 (x - x0)2 + z2 dxo. w(x, z, t )  = - = - 
az 2J0 
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FIGURE 4. (a) Coordinate system of the thickness problem for a swimming scallop; the quasi-two- 
dimensional approximation is made for an arbitrary longitudinal strip. (b) Side view of the strip. 

We can see from (20) to (22) that the potential ($) and the x-component of the velocity 
(u)  are symmetric, and the z-component (w) is antisymmetric with respect to the (x, y)- 
plane. Therefore the pressure distribution (18) due to the thickness effect is the same 
for the top and bottom surface, and no lift is produced. The velocity component in the 
z-direction at z = 0 can be evaluated as (Katz & Plotkin 1991) 

w(x,  f 0, t) t) .  

Substituting (23) into the boundary condition (16) results in 

(23) 

where as and uu are the steady and unsteady parts of the source strength, respectively, 
and SLY = SL/Sy. The solution of the thickness problem is obtained by substituting 
(24) into (20)-(22). Notice that the integrals in (20)-(22) are singular when z = 0, thus 
the Cauchy principal values should be taken. After integrations we have the potential 
along the x-axis as 

1 
$,(x) = -[1-xlnx-(1-x)ln(l-x)], 

7c 

1 $'(x) = -xz)ln(l -x) . 

Substituting (25) into (18) yields the pressure on each shell evaluated on the z = 0 plane 
as 

We are interested in the total force, and particularly the moment about the hinge, 
due to the outer fluid reaction on each shell. The forces and moments on the upper and 
lower shells have the same magnitude but act in opposite directions. We will choose the 
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force and moment on the upper shell, the negative of these quantities will represent 
those on the lower shell. The coefficient of the force (positive in positive z-direction) on 
the upper shell can be derived as 

The coefficient of the moment about the hinge x = SLY, z = 0 (positive in the clockwise 
direction) is 

4. Hydrodynamic loads 
The solution obtained in $ 3  is composed of two parts: a steady part associated with 

the steady thickness distribution of the scallop when the shells are closed, and an 
unsteady part associated with the expansion and contraction of the boundary. The 
steady part can be calculated from measurements of the thickness distribution for the 
specific species. The unsteady part of the fluid force was found to be independent of 
the configuration of a specific species. In fact, the unsteady part is a quasi-two- 
dimensional solution of an object with an isosceles triangle section with base facing and 
perpendicular to the oncoming flow (figure 4b). The upper and lower straight side lines 
of the triangle pitch around the hinge and do not pass through the mean surface 
z = 0. 

The force and moment per unit span can be rewritten in dimensional form as 

1 
27t M y )  = M,+Ml+M2+M, = M,(y)+-pu*s;p 

+-PUS 3 S2---p(6St+S2)-. dP s; d2P (30) 
47t Y d t  167t dt2 

Notice that the above force and moment act only on part of the entire wetted surface 
of the animal, namely on the outer surface of one shell. This is different than the usual 
cases in which the fluid-dynamic forces are derived for the whole immersed body. 

We will focus on the moment about the hinge, since it will be used directly in our 
dynamic model of the swimming system. If we take the scallop commissural planform 
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as a circular shape, integrating the moment (30) over all unequal longitudinal strips 
gives the total moment for each shell as 

where M ,  = pv2 1;’” C,, dy, 

The unsteady moment due to the symmetric thickness effect is represented by three 
terms which are proportional to the deformation itself, and the first and second 
derivatives of the deformation, respectively. Each term in (31) will be analysed in the 
following subsections. 

4.1. Added mass 
The last term in (31) results from the angular acceleration of the shell and If is 
equivalent to the added moment of inertia (or added mass in a rectilinear motion). For 
Placopecten magellanicus the ratio of shell weight (m,) to shell area (A,) in relation to 
shell length was measured by Dadswell & Weihs (1990). At S ,  = 0.055 m, for example, 
for one shell the value of the ratio of shell weight to shell area is 

m,/A, = 1.9 kg m-’. 

Suppose that the mass of shell is uniformly distributed over the projected circle; the 
moment of inertia for one shell is then 

I, = -S: :: (TJ 2 = 4.26 x kg m2 

and the added moment of inertia as calculated from (33) is 

I, = 46.32 x lop6 kg m2. 

The added moment of inertia can be ten times larger than the moment of inertia of the 
shell itself. Thus for scallop swimming, the dominant inertia in the dynamic system is 
the added mass. The fluid acceleration reaction will significantly influence the shell 
oscillation. 

4.2. Flow-induced pseudo-elasticity 
The second term on the right hand side of (31) is the unsteady moment proportional 
to the gape angle ,8(t). This displacement force has a form similar to a linear elastic 
force and also increases with the displacement. The elastic force of the hinge ligaments 
resists closing and increases as the gape angle decreases, but this fluid force decreases 
as the gape angle decreases. We call this term the flow-induced pseudo-elasticity force. 
It provides an opening force over the whole cycle. During the opening phase of the 
cycle this force assists shell opening, but during the closing phase it acts to oppose the 
effort of the muscle contraction. From (29) to (30) the flow pseudo-elasticity gives zero 
force, but a couple. The rotational pseudo-stiffness kf depends on the fluid density, 
swimming speed and body size. 

The pseudo-stiffness can be estimated and compared to the measured stiffness of 
hinge ligaments. Vogel (1985) measured the rotational stiffness of the hinge ligament 
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Species Size: S,  (m) Speed: U (m s-') Source 

Chlamys opercularis 0.065-0.075 0.30 Moore & Trueman (1 97 1) 
Chlamys islandica 0.010-0.020 0.15 Gruffydd (1 976) 
Chlamys islandica 0.0654.075 > 0.35 Gruffydd (1  976) 
Amusium pleuronectes 0.065-0.10 0.37-0.45 Morton (1980) 
Placopecten magellanicus 0.03&0.10 0.30-0.60 Dadswell & Weihs (1990) 

TABLE 1. Swimming speeds of scallops 

for a 0.066 m long Pecten irradians. From his figure 2 the rotational stiffness (k )  was 
estimated to be about 0.083 N m. The swimming speed is needed to evaluate the 
pseudo-stiffness, but was not given in his paper. The measured and estimated 
swimming speeds for other species are listed in table 1. Higher swimming speeds were 
reported for some species (e.g. 0.73 m s-l in Morton 1980). We take a value of 0.5 m s-l 
as an example in our calculation, which is the same as that chosen by Vogel (1985). 
Then from (33) 

kf  = 0.0078 N m, or k f / k  = 9.4%. 

DeMont (1990) also measured the stiffness of the hinge for Pecten maximus. For a 
0.0854 m long individual the stiffness was estimated to be 0.29 N m. Its pseudo-stiffness 
at the swimming speed of 0.5 m s-l can be calculated as 

k f  = 0.017 N m, or k,/k = 5.9%. 

Thus, for the two examples above, during shell oscillations the pseudo-elasticity 
generated by the outer flow may provide forces of about 9.4 YO and 5.9 YO of the hinge 
elastic forces. Notice that with increasing gape angle the pseudo-elastic force increases, 
but the hinge elastic force decreases. Therefore the flow-induced pseudo-elasticity 
makes larger instantaneous contributions at larger gape angles. Furthermore the 
pseudo-elasticity is proportional to the square of the speed and the cube of the size, so 
that for larger and/or faster swimming animals the pseudo-elasticity may be further 
enhanced. 

4.3, Flow - induced pseudo-v iscosity 
We now look at the term in (31) proportional to the angular velocity. This force has 
a form similar to that of a linear dashpot. Again the function of the fluid force is 
different than the damping force and it acts in the same direction as the velocity of shell. 
For convenience we call it the flow-induced pseudo-viscosity. Since it acts in the 
direction of the shell velocity, it will assist the hinge ligaments in opening the shell and 
the adductor muscle in closing the shell. 

Bowie et al. (1993) measured the damping in the hinge of Placopecten magellanicus. 
The damping is temperature-dependent, and increases as temperature decreases. From 
their figure 2, at 10 "C the resilience (R) of the intact hinge was about 79%. The 
resilience is defined as 

(34) 

where 8 is the natural logarithmic decrement. If the damping effect could be modelled 
by a viscous dashpot which is assumed to be parallel to the elastic element of the hinge, 
then the damping factor is (Thomson 1988) 

In (1 OO/R) = 28, 
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Shell height, Hinge viscosity, Pseudo-viscosity, 
s, (4 c (kg m2 s-l) cf (kg m2 s-l) 

0.0875 0.0041 0.0048 
0.0895 0.0056 0.0052 
0.0908 0.0059 0.0055 
0.101 0.0129 0.0085 

TABLE 2. Viscous coefficients for the flow-induced pseudo-viscosity and the hinge damping of 
Placopecten magellanicus at 10 "C 

where c is the viscous coefficient of the hinge, and c, is the critical viscous coefficient. 
The damped vibration frequency cf,) was taken as 3 Hz in their experiments. Thus the 
viscous coefficient of the hinge at 10 "C is 

C =  4.n fd5  I = 14.54 Z, 
(1 - ?)1'2 

where I is the moment of inertia about the hinge for the shell and the weight added to 
the top shell on which the free damped oscillation tests were performed. The values of 
c for four samples are listed in table 2. 

The pseudo-viscosity coefficients can be calculated by (33) and values for the same 
samples at U = 0.5 m s-' are also listed in table 2. The pseudo-viscosity coefficients are 
very close to the hinge viscous coefficients at 10 "C. The flow-induced viscosity almost 
compensates for the effect of the hinge damping. The energy lost in the hinge damping 
is fed back from the surrounding flow. The hinge-shell-outer-fluid system of a 
swimming scallop may work with very little damping. 

4.4. Steady moment 
The steady part of the total moment depends on the specific airfoil shape, i.e. hts(x, y )  
defined in (12), which is the average surface of the lower and upper shells. For different 
species and even different individuals the thickness distributions are different. The 
steady part M ,  plus the pseudo-elasticity term M ,  = k,P are often called the quasi- 
steady contribution of the fluid reaction. They are the solutions for steady flow past an 
instantaneous configuration of the subject. For a section with an elliptical shape the 
steady pressure coefficient along the chord is (Katz & Plotkin 1991) 

C p s  = -2(trn/Sy), (37) 

where t ,  is the maximum thickness (top-bottom height). This pressure coefficient is 
constant along the chord. However, the cross-sectional shape of the scallops is 
generally not close to an ellipse. For other cross-sectional shapes pressure distributions 
can be similarly obtained by integrating (25). 

A thickness surface with a parabolic chordwise (ventral-dorsal) and linear spanwise 
(anterior-posterior) distribution, can better approximate a scallop section. At an 
arbitrary point ( x ,  y ) ,  we have 

t ( y )  = -PY/SJ),  -& 6 y 6 + S L ,  

where t ,  is the maximum thickness at the middle of the shell, and S J y )  the length 
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between the leading (ventral) edge and trailing (dorsal) edge at a spanwise location. 
Substituting (38) into (25) and (28) we can obtain the steady moment on one shell 
about the hinge as 

1 
M, = -flu2 2n t ,  s;. (39) 

If we take tm /S ,  = 0.2 and /3, = 5', which are representative value for most swimming 
scallops, the ratio of the steady moment to the pseudo-elastic moment is 

The steady part of the total moment is higher than the part proportional to the angular 
displacement. 

5. Discussion 
Generally, the small-disturbance solution can give accurate predictions for most 

parts of the flow region. However, the solution may not be very good in some localized 
regions, such as near the front and rear stagnation points. If the thickness decreases, 
the stagnation region becomes smaller and the solution will move closer to the exact 
solution. Since the stagnation regions are small compared to the remaining part of the 
chord length, the total force and moment on the shells can be predicted quite well by 
the small-disturbance theory. 

Vogel's measurements (1985) are the only available fluid force data on scallops that 
can be used to make a comparison with the present theory. For a 0.066 m long Pecten 
irradians swimming at 0.5 m s-l, Vogel measured the pressure distribution on the outer 
surface of the shells when they were closed and opened at a gape angle of 13.3'. For 
the open shells, a piece of brass plate on which the flow pressure was measured was 
fitted on the gape. For the closed shells, the moment about the hinge tending to open 
the shells, averaged from the values of two shells, was calculated to be 0.001 80 N m. 
This moment should correspond to the steady moment M, in (31). Assuming a 
thickness ratio tm/SL = 0.2, the same swimming speed U = 0.5 m s-l and a shell height 
S, = 0.066 m, the steady moment from the present theory (39) is M, = 0.00230 N m. 
The theoretical value is higher than the measured value. The theoretical value is 
calculated for a thickness surface with a parabolic chordwise arc and the maximum 
thickness located at the centre as given by (38). Most scallops, including Pecten 
irradians, have a more gentle increase in the thickness on the ventral surface. The 
maximum thickness is located behind the centre and there is a more rapid decrease on 
the dorsal surface. Such a thickness distribution will give a lower pressure on the 
ventral part of the shell surface than the parabolic thickness distribution. This will 
reduce the moment about the hinge, so that the theoretical prediction will be closer to 
the measured value. 

The difference between the measured moment for the closed and gaped shells should 
be equivalent to the pseudo-elasticity term in (31). When the shells were opened, the 
moment due to pressure on each shell was 0.00202 N m, and the moment due to the 
pressure at the gape (on the brass plate) was 0.00260 N m. The two values were added 
to give an overall moment tending to open the shell of value 0.00328 N m. The moment 
for the closed shells was 0.001 80 N m. The difference between the moments of the 
gaped and closed valves is then 0.001 48 N m, and if the pressure on the gape is not 
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taken into the estimation the difference in the moments is 0.00022 N m. The theoretical 
moment (31) for the same gape angle is 0.00090 N m, which is between the measured 
value with and without the gape pressure contribution. 

The flow around the gape has two components: the flow turns up and down to pass 
around the ventral edge (two corners of the triangle profile), and the flow is sucked into 
the mantle cavity during the refilling part of the cycle. Vogel did not consider the 
sucking flow itself in his experiments, but supposed that during the whole cycle all fluid 
around the ventral region is sucked into the cavity and pushes the shells open. Such 
treatment is not adequate. First, the flow component of sucking into the mantle cavity 
only occupies part of the cycle, i.e. in the valve opening phase. Secondly, the fluid force 
acting on the internal surface of the shell due to flow into the mantle cavity is not 
equivalent to that resulting from the flow around the stagnation region at the ventral 
gape as measured in the experiments. Furthermore, the outer flow component exists 
during the whole cycle. The gape pressure in Vogel’s measurements will partly 
contribute to the formation of the rapid outer flow leaving the stagnation point and 
moving around the upper and lower corners at the ventral edge. This contributes to the 
total force of the outer flow obtained in the present work. In other words, the opening 
moment due to the outer flow, based on Vogel’s measurements, should be between the 
two values above, in agreement with our theoretical value. 

A time-independent negative pressure exists on each shell at any instant during 
swimming. This results in a force and moment constantly acting to open the valves 
during the whole clapping cycle. The moment for a specific species can be calculated 
by (25) and (28) using the measured thickness distribution. However, the steady part 
does not participate in the dynamic process of the system, and should be balanced by 
the material stiffness associated with the muscle and outer hinge ligaments connecting 
the two shells. Thus it will not be included in the dynamic model of the locomotor 
system, although the steady part may be even higher than M I .  

The effect of fluid acceleration on aquatic locomotion has been emphasized (Daniel 
1984). The present analytical solutions precisely show the structure of the unsteady 
fluid force due to the thickness effect. The force has three terms, which are proportional 
to the deformation itself, and the first and second derivatives of the deformation. The 
flow-induced pseudo-elasticity and -viscosity are related to the swimming speed, but 
the added mass is not. The added-mass force always exists as long as the scallop is 
clapping the shells. The pseudo-elasticity and -viscosity will be very small at low 
swimming speeds. It has been shown that the unsteady forces (lateral force and thrust) 
on a swimming fish are not determined only by the lateral acceleration of the body, but 
are greatly influenced by the vortex wake carrying information on the undulation 
history of the body and tail (Wu 1971 ; Lighthill 1975; Blickhan & Cheng 1994). The 
present unsteady side hydrodynamic forces on swimming scallops, although without 
the wake contribution, are also not simply proportional to the acceleration of the shell. 
In general, the reaction of the fluid on a swimming animal performing unsteady motion 
may depend on the whole history of the body motion. The derivatives of motion of all 
orders with respect to time may influence the fluid force. 

Recent studies (DeMont & Gosline 1988; Bowtell & Williams 1994; Cheng & 
Blickhan 1994) have shown that the dynamics and energetics of aquatic locomotion 
should combine all mechanical elements associated with the swimming animal. The 
mechanical energy generated by the muscles not only contributes to the propulsive 
hydrodynamic work, but also powers the reciprocal movement of the locomotor 
apparatus. The unsteady side fluid force which acts on the external surface of the 
animal and directly interacts with the muscle contraction has generally been ignored in 
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studies of aquatic jet-propelled locomotion. This fluid reaction can be one of the 
important dynamic elements in the locomotor system, and will be included in our 
dynamic studies. Generally, a phase delay exists between the movement and the 
unsteady force, and may make the system optimize energy savings. The in vivo working 
behaviour, the mechanical design of the relevant tissues and the neural control of the 
locomotion will be influenced by this fluid reaction. 

The pallial curtain (velum) between the parted shells regulates the flow through the 
ventral mantle margin and flow in the mantle cavity during the shells opening. The 
inward and outward flows will generate forces in the swimming direction, but their 
influence on the vertical force on the shell is considered small. Since the present work 
is the first dealing with the side hydrodynamic forces in scallop swimming, indeed in 
all jet-propelled locomotion, we have used a simplified model to get meaningful results 
and to evaluate the possible importance of this fluid reaction. The real influence of the 
inward and outward flow on the outer flow over the shell has not been quantitatively 
evaluated in this analytical work. A potential flow model including the inward and 
outward flows has been suggested in $2.1. A boundary element method for potential 
flow past bodies with arbitrary three-dimensional shapes (Cheng et al. 1992) may be 
suitable to model this complex phenomenon. 
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